根據文檔顯示,ConvLSTM1D層需要一個形狀為(samples, timesteps)的遮罩。您正在計算的掩碼的形狀為(samples, time, rows)。這里有一個解決方案可以解決您的問題,但我不確定這是否是正確的方法: import tensorflow as tfinput1 = tf.keras.layers.Input(shape=(2, 94, 3))masking = tf.keras.layers.Masking(mask_value=-999)(input1)convlstm = tf.keras.layers.ConvLSTM1D(filters=16, kernel_size=15, data_format='channels_last', activation="tanh")(inputs = masking, mask = tf.reduce_all(masking._keras_mask, axis=-1))dropout = tf.keras.layers.Dropout(0.2)(convlstm)flatten1 = tf.keras.layers.Flatten()(dropout)outputs = tf.keras.layers.Dense(1, activation='sigmoid')(flatten1)model = tf.k