中文無詞典分詞是一種基于機器學習方法的分詞技術,常見的算法包括最大熵、條件隨機場等。下面是一個基于條件隨機場的中文分詞示例代碼:
1. 首先,需要導入相關庫:
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import edu.stanford.nlp.ling.CoreLabel;
import edu.stanford.nlp.ling.Word;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.ChineseSegmenterAnnotator;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.sequences.Sequence;
import edu.stanford.nlp.sequences.SequenceModel;
import edu.stanford.nlp.util.ArrayCoreMap;
import edu.stanford.nlp.util.CoreMap;
import edu.stanford.nlp.util.PropertiesUtils;
2. 然后,初始化分詞模型:
public class CRFTokenizer {
private StanfordCoreNLP pipeline;
public CRFTokenizer() {
Properties props = PropertiesUtils.asProperties(
"annotators", "tokenize, ssplit, pos, lemma, depparse",
"tokenize.language", "zh",
"pos.model", "edu/stanford/nlp/models/pos-tagger/chinese-distsim/chinese-distsim.tagger",
"segment.model", "edu/stanford/nlp/models/segmenter/chinese/ctb.gz",
"segment.sighanCorporaDict", "edu/stanford/nlp/models/segmenter/chinese",
"segment.serDictionary", "edu/stanford/nlp/models/segmenter/chinese/dict-chris6.ser.gz",
"segment.sighanPostProcessing", "true",
"depparse.model", "edu/stanford/nlp/models/parser/nndep/UD_Chinese.gz",
"parse.maxlen", "60",
"ssplit.boundaryTokenRegex", "[.。]|[!?!?]+");
pipeline = new StanfordCoreNLP(props);
}
}
3. 實現分詞方法:
public class CRFTokenizer {
// ...
public List<String> tokenize(String text) {
List<String> tokens = new ArrayList<>();
Annotation annotation = new Annotation(text);
pipeline.annotate(annotation);
List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
for (CoreMap sentence : sentences) {
ChineseSegmenterAnnotator segmenter = new ChineseSegmenterAnnotator(false);
segmenter.annotate(sentence);
List<Word> words = new ArrayList<>();
for (CoreLabel token : sentence.get(CoreAnnotations.TokensAnnotation.class)) {
Word w = new Word(
token.originalText(),
token.beginPosition(),
token.endPosition(),
null,
token.get(CoreAnnotations.PartOfSpeechAnnotation.class),
null
);
words.add(w);
}
SequenceModel<Word> segmentModel = CRFClassifier.getClassifierNoExceptions("edu/stanford/nlp/models/segmenter/chinese/ctb.gz").segmenterModel();
Sequence<Word> segmented = segmentModel.bestSequence(words);
for (Word word : segmented) {
String token = word.word();
if (token.trim().isEmpty()) {
continue;
}
tokens.add(token);
}
}
return tokens;
}
}
這個實現可以在運行時加載 Stanford 的中文分詞模型,使用基于條件隨機場的模型進行無詞典分詞,并返回結果列表。